
ScheldeMonitor Manual: Using the RStudio environment

Written, maintained and updated by the ScheldeMonitor team of VLIZ - Version 3
(30/07/2021)

Contents

1 About 1

2 Connecting to the RStudio environment of ScheldeMonitor 2

3 Working with the RStudio environment of ScheldeMonitor 3

3.1 Guidelines for workspace . 3
3.2 Guidelines for scripts . 12
3.3 Guidelines for code . 17

4 Using data from ScheldeMonitor in RStudio 22

4.1 Using data from download data files . 26
4.2 Using data from generic webservices . 28

5 Helpdesk 30

1 About

This document was written as a manual on the use of the online RStudio environment of the ScheldeMonitor
information and data portal. This environment has been accessible through the ScheldeMonitor website since
2021. It provides accredited researchers and the partners of ScheldeMonitor with a centralized RStudio hub to
do analysis and build up scripts directly based on the data and information that is held within the portal and the
underlying database.
Within the manual, guidelines are provided for new users or users that are inexperienced in the use of RStudio,
as well as some overall recommendations on how to keep work in RStudio structurized and comprehensible. The
last chapter of this manual also provides a step-by-step breakdown on how to load data from ScheldeMonitor into
the RStudio workspace.
The RStudio environment can be accessed from the website, using the following link. To access, credentials
are required. These credentials can be requested here, or by sending a mail to info@scheldemonitor.org with a
statement on the reason why use of the RStudio environment is required.
It is also possible to link the RStudio environment with an existing project from the ScheldeMonitor GitHub
organization. How to work with GitHub in relation with RStudio, is discussed in an additional GitHub manual.

1

https://www.scheldemonitor.org/en
https://www.scheldemonitor.org/en/data-analysis-platform
https://rshiny.lifewatch.be/account?p=register
mailto:info@scheldemonitor.org
https://www.scheldemonitor.org/sites/scheldemonitor.be/files/2020-12/manual-github.pdf

2 Connecting to the RStudio environment of ScheldeMonitor

The ScheldeMonitor environment can be accessed at (https://rstudio.scheldemonitor.org/auth-sign-in) using your
personal credentials:

These credentials are similar to those used for all other tools within the ScheldeMonitor platform, such as the
data download toolbox and the E-room.
New users should first register to receive their personal credentials. This can be done using this link or by
contacting the helpdesk of ScheldeMonitor stating a reason to use the RStudio environment.
The following information is needed to register on the RStudio environment of ScheldeMonitor:

After registration, your account needs to be approved by a moderator of the ScheldeMonitor RStudio environment.
This process can take one or two working days.

2

https://rstudio.scheldemonitor.org/auth-sign-in
https://rshiny.lifewatch.be/account?p=register

After approval, you can use your personal credentials to sign in to the RStudio environment of ScheldeMonitor.
Once logged in, you will see your personal workspace in RStudio. This workspace can either be cleaned (for
instance if you are a new user) or show the structure and content that was worked on during your previous session
if you saved the workspace image on the last closure.
A personal workspace is standardly composed of four windows, showing scripts or dataframes, your environment,
the console, and your project or personal file structure. It also indicates which user is logged in and which project
is linked to your workspace:

3 Working with the RStudio environment of ScheldeMonitor

3.1 Guidelines for workspace

The default behaviour of R for the handling of .RData files and workspaces encourages and facilitates a model of
breaking work contexts into distinct working directories. This implies that the user can select a certain folder in
his local directory to use as the location where files, handled through RStudio, are saved. This local directory, or
workspace, can be altered at any given moment by the user.
In version v0.95 of RStudio, a new ‘Projects’ feature was introduced to make managing multiple working directories
more straightforward. It is recommended to use this feature, however this chapter also explains how to handle
your workspaces in the default manner.
As with a local RStudio installation, the online RStudio environment of ScheldeMonitor uses the local user’s home
directory as workspace by default. This workspace is typically referenced using ~ in R. When RStudio starts up it
does the following:

• Executes the .Rprofile (if any) from the default working directory.

3

• Loads the .RData file (if any) from the default working directory into the workspace.
• Performs the other actions described in R Startup.

When RStudio exits and changes to the workspace have been made, a dialog box asks whether these changes
should be saved to the .RData file in the current working directory. Clicking “Save” will ensure that your changes
are stored and will appear as they were the next time you login to the RStudio environment.

3.1.1 Set a workspace

RStudio displays the current working directory within the title region of the Console. To check your current
working directory, you can run the command getwd() in the RStudio console:

getwd()

[1] "C:/Users/pietr/Documents/Code/ScheldeMonitor-Manuals"

To change the working directory, you can run the command setwd() in the RStudio console with the new directory
inserted as a string:

setwd("//fs/HOME/jeller")

You can also change the working directory by selecting the “Session” menu and “Set Working Directory”. Be
careful to consider the side effects of changing your working directory:

• Relative file references in your code (for data sets, source files, etc.) will become invalid when you change
working directories.

• The location where .RData is saved at exit will be changed to the new directory.

Because these side effects can cause confusion and errors, it is usually best to start within the working directory
associated with your project and remain there for the duration of your session.
The best practice, however, is to connect the RStudio environment to a certain ‘project’. This allows for a better
oversight on the working directories and different cases you work on within the same RStudio environment. The
next segments describe how such projects are instigated.

3.1.2 Start a local project

Any approved user can utilize the RStudio environment to commence or continue his or her personal project with
the data of ScheldeMonitor. Doing so, users can either start a new local project, download an existing project
from their own GitHub, or connect their work to the GitHub organization of ScheldeMonitor.
Starting a local project is the easiest way to commence your work. This project is saved on a local drive of the
user’s hardware, and can only be restarted by accessing that drive. To initiate such a local project, users need to
follow the following steps:

1. Open the “File” menu and select “New Project”.

4

2. In the New Project Wizard, select “New Directory”. This will start a new project that will be saved on the
local drive of the user’s hardware.

3. The user can now choose which type of project needs to be started

• New Project: Basic R project where all kind of scripts can be set up.
• R Package: Project where users can make and publish dedicated R packages for other users.
• Shiny Web Application: R project where all scripts are premade for users to create and run Shiny web

applications.

5

4. Lastly, the user can name the project and select the directory in which the project will create a subdirectory.
Selecting the option “create a git repository” will allow the user to use locally installed version control. This
option is not needed when working with an online GitHub space.

3.1.3 Connect the RStudio environment of ScheldeMonitor to GitHub using SSH authentication

3.1.3.1 Disclaimer
This manual was written for the users of the online RStudio environment of ScheldeMonitor. The procedure and

affiliated scripts have been deployed on the server of this environment, so that users do not need to install anything
to execute the procedure. This implies that this procedure will not work on other (local) RStudio environments
or servers. Users that want to execute the procedure within another RStudio environment, not affiliated to the
ScheldeMonitor server, can request a Git-bundle of the scripts at info@scheldemonitor.org.

3.1.3.2 Reason for SSH authentication
In 2020, GitHub announced that it would no longer accept account passwords when authenticating with the

REST API and will require the use of token-based authentication. This implies that when using the combination

6

https://rstudio.scheldemonitor.org/auth-sign-in
mailto:info@scheldemonitor.org

of the ScheldeMonitor RStudio workspace with the GitHub repository, all actions (e.g. pull, push, commit) will
require a different kind of authentication than standardly used.
VLIZ has identified that setting up a SSH key would be the best way for users moving forward. This manual
explains in detail the one-time procedure that is needed for a correct setup. This procedure involves four scripts
that need to be run by a user from within the terminal of the RStudio environment of ScheldeMonitor.

3.1.3.3 Accessing the RStudio terminal
The ScheldeMonitor environment can be accessed by following the steps described in the chapter Connecting

to the RStudio environment of ScheldeMonitor
Once within the workspace, switch the console to the terminal window by clicking the ‘Terminal’ tab on top of
the window. This window is where you will conduct all necessary command lines:

3.1.3.4 Setting up a SSH key

1. Generate key pair

If users have never made a SSH key before within this RStudio environment, they need to run the ‘make-git-
sshkey.sh’ script. This script will generate a standard named key pair to use for connecting to git services.
To run, execute the following command in the terminal:

make-git-sshkey.sh

This will provide a message that the key pair was generated:

2. Register key pair

7

https://rstudio.scheldemonitor.org/

Next, the user will need to register the generated key pair on GitHub online. To do so, the script ‘connect-
sshkey.sh’ can be used to correctly configure locally and advice the user towards how to publicly register the
public part of the key at the service of the user’s choice (defaults to GitHub).
To run, execute the following command in the terminal:

connect-sshkey.sh

This will provide an extensive message, detailing how to register the key on GitHub:

3. Copy key

As stated in the message, copy the text between the two ‘----’.

4. Add key to GitHub

Surf to https://github.com/settings/keys, and select the ‘New SSH key’ button in the upper right corner.

This will open a new window with two text fields. In the ‘Key’ field, paste the text that you have copied from the
RStudio terminal in step 3.
Optionally, you can give a name to this key in the ‘Title’ field, applying to the RStudio environment in which you
have created the key (best practices state that each environment has its own key).
When finished, press the ‘Add SSH key’ button. This will return you to the previous window, where you will see
the new key added.

8

https://github.com/settings/keys

5. Verify SSH key

To verify if the previous steps were executed correctly, the script ‘check-gitssh.sh’ can be used. This script will
check if the connection is set up correctly. This step can be done as often as needed or wanted.
To run, execute the following command in the terminal of RStudio:

check-gitssh.sh

If done for the first time, the terminal might ask you to verify the action. To do this, type ‘yes’ behind the
question mark and execute:

When everything was done correctly, the terminal will return the correct username:

The workspace is now connected via SSH. The user can now start working through SSH in new projects or convert
already connected projects to SSH. Both methods are explained in the following chapters.

3.1.3.5 Apply SSH authentication to new projects
From now on new projects should immediately start off by using the correct remote origin-url. The steps below

explain how to do that.

1. Open the “File” menu and select “New Project”.

9

2. In the New Project Wizard, select the option “Version Control”.

3. Next, select “Git” as this is the version controlled methodology used within the context of ScheldeMonitor.

10

4. Paste the URL of the repository in the ‘Repository URL’ field. In many cases, users paste the HTTPS URL
of the repository. However, when using SSH authentication, the SSH URL needs to be pasted instead. This
SSH URL can be found on the homescreen of the online repository, by selecting the green ‘Code’ button
and the SSH option.

After choosing a name for your project locally, as well as a location, the project can be created.

3.1.3.6 Converting existing projects to SSH authentication
Projects were already connected to the RStudio workspace, before converting to SSH, will still work through

HTTPS. To change this, open an existing project that you wish to convert in the RStudio environment. This can
be done in the upper right corner of the screen:

Once the project is opened, the script ‘fix-gitssh.sh’ can be used which will easily switch the connection to your
project to git-ssh, and in the process figure out what service it is connected to.

fix-gitssh.sh

11

The terminal should return the original connection, and a message that it is fixing the connection to git-ssh:

3.2 Guidelines for scripts

A working directory or project in RStudio can hold a large number of scripts and files to work with. In order to
keep the work organized, as well as reproductive over time, it’s important to structure these scripts both in the
directory as well as internally. The segments below suggest guidelines that might aid researchers in keeping their
work transparent for themselves and other users.

3.2.1 Directory structure

A working directory or project is similar to any other folder on the local drive of your hardware. This implies that
such a directory can consist of folders and subfolders. It is, however, imperative that folders are created following
a certain structure or idea, to make the scripts and underlying data findable for yourself and other users. There
are multiple levels on which a directory can be structured.
Firstly, if your work in RStudio is linked to a certain publication or report, your directory structure should mimic
the same structure as the headings of the report. Here is an example from the T2015 report on the Scheldt, for
which the project directory was structured conform the titles and subtitles within the published report:

Yet, it is even more important to have a uniform structure at the lowest level of the working directory, where all
files are stored. Especially for projects that are not linked to a fixed report, and for which the above-mentioned
structure is not applicable.
Typically, data files and scripts should be saved in separate folders. Although it might seem more convenient to
keep those files together, the general overview benefits from the two-folder structure. Scripts and data files often
do not have a 1:1 relationship, as a single script can use multiple data files while these data files are run through
multiple different scripts. However, the structure of each folder should be the same, with a folder for every phase
of the project:

12

Using data from: Using scripts or functions from: Saving new data or results in:
Step 1 - Import data (if necessary) n/a a. Import scripts a. Raw data
Step 2 - Clean data a. Raw data’ b. Cleaning scripts b. Cleaned data
Step 3 - Anayze data ’b. Cleaned data c. Analysis scripts c. Analyzed data
Step 4 - Create figures or results c. Analyzed data d. Figure scripts d. Figures & Results

Using this structure, a uniform workflow can be established within the project directory. This workflow follows
four steps, that are explained using the following table:
It is possible that users rather run a single script to go through all these steps, especially in smaller projects. In
this case, a ‘Main.R’ script can be saved alongside the ‘Data’ and ‘Scripts’ folders. This main script can then
run through all these steps on its own, while sourcing different data files and functions from the underlying folder
structure. The latter is especially important in larger projects, to ensure that the length and readability of the
main scripts is optimal. When doing so, it is very important that the main script is well structured and annotated,
as will be further explained in Script structure and Script annotations below.
In any case, only one ‘Main.R’ file should be present as to not create confusion.

3.2.2 Script naming

Scripts should be named in such a way that users can easily derive its purpose, in order to not have to open all
scripts in an RStudio environment to know what they are used for. This is especially important when working
with a main script that sources functions from other scripts throughout the different phases.
For example, when using different scripts for different kind of graphs, the nomenclature should clearly indicate
which plot is made using the script:

Additionally, if the work in the RStudio environment is linked to a certain report or publication, the figure number
from the publication could be inserted in the file name:

13

It is also possible that multiple scripts are used for the same figure, for instance if users want to be able to
show both the original and the new plot on a later date. Still, the nomenclature needs to clearly indicate the
discrepancies in the different scripts:

Nevertheless, whatever nomenclature is chosen, it should consist of a fixed and uniform naming convention. There
are several options to choose from, similar to the ones available for code nomenclature as explained in Naming
conventions:

• alllowercase: e.g. makebarplot
• period.separated: e.g. make.barplot
• underscore_separated: e.g. make_barplot
• lowerCamelCase: e.g. makeBarPlot
• UpperCamelCase: e.g. MakeBarPlot

3.2.3 Script structure

Similar to a directory, an individual script can greatly benefit from a fixed and uniform structure. This structure
should clearly delineate the different sections in a script, which gives the reader a quick overview on the content, but
also ensures the user that all actions and functions are run in a fixed order. Script structure can be accomplished
almost immediately by using headings in the code. These are inserted in the same way as annotations are done.
Ideally, all scripts should have the same headings to start with:

• Who, when, what and how: This is a large heading that should start every script in your project, stating
who wrote the script, when it was written, how to contact the writer and what its purpose is.

• 0 – Load libraries: In this section all libraries are listed that need to be loaded before running the whole
script. This section can also give some further explanation on the use of those libraries.

• 1 – Static part: In this part, all static actions are taken such as loading in data files, preparing those data
files for analysis, sourcing other scripts and functions or naming arguments that will be used later on in the
script.

• 2 – Script: This section contains the actual code that makes the script fulfill its purpose.

##
This is an example for the manual
##
written by Jelle Rondelez of VLIZ
info@scheldemonitor.org - Oct 2020
##

##############################
0 - Load libraries

14

##############################
library(dplyr) # package to clean datatable
library(lubridate) # package to change date formats

##############################
1 - Static part
##############################

#Assign variable
newvar <- ""

#Source script from within directory
source("Script/a. Import scripts/ImportWFS")

#Open datafile
datafile <- read.csv(file = "Data/b. Cleaned data/dataRWS.csv")

##############################
2- Scripts
##############################
code...

Note that the sourced files in the example above are using the directory structure as described in Directory
structure.
These headings not only give a fixed structure and order to all scripts in the project, it also has the added
advantage that sections can be collapsed or expanded if needed. Especially for longer scripts, in which certain
sections of the code are not of interest to the user, this can greatly increase the readability of the script:

Larger scripts can benefit more from an expanded structure with additional headings. This is especially true
for ‘Main.R’ scripts that run through all phases of the project within a single script, as discussed in Directory
structure. Those type of scripts typically source and use a multitude of different functions and files. An extended
structure can make these scripts more readable and can make it easier to search for a specific function or action:

##
This is an example for the manual
##
written by Jelle Rondelez of VLIZ
info@scheldemonitor.org - Oct 2020
##

##############################

15

0 - Load libraries
##############################
library(dplyr) # package to clean datatable
library(lubridate) # package to change date formats

##############################
1 - Static part
##############################

#Assign variable
newvar <- ""

#Source script from within directory
source("Script/a. Import scripts/ImportWFS")

#Open datafile
datafile <- read.csv(file = "Data/b. Cleaned data/dataRWS.csv")

##############################
2- Scripts
##############################
code...

##############################
3 - Analysis part
##############################
code...

##############################
4 - Make plots & Figures
##############################
code...

3.2.4 Script annotations

Annotating code is important for a number of reasons. The main reason is for the user personally when looking
back on what was coded. It helps to explain in detail what a line, chunk or even section of code is trying to
accomplish. This is also helpful for other people who read the code. Explaining what a line of code is doing can
be useful for others who are looking to adapt work to their own, or when someone is checking or evaluating a
chunk of code. Annotating code is done with the symbol # (hashtag). Typically annotating can be done above
a whole chunk of code, like when explaining the purpose of a certain function.

#Reactive values for uses locations
data_of_click <- reactiveValues (clicked = NULL)
longitude_click <- reactiveValues (lng = NULL)
latitude_click <- reactiveValues (lat = NULL)

#if user clicks on map, new coordinates are saved and maps is adjusted
observeEvent(input$Map_click, {

data_of_click$clicked <- input$Map_click
longitude_click <- inputMap_clicklng
latitude_click <- inputMap_clicklat
leafletProxy(’Map’) %>%

16

clearMarkers() %<%
addMarkers(lng = inputMap_clicklng,

lat = inputMap_clicklat,
popup = paste("Longitude=", round(inputMap_clicklng, 2),

"and",
"Latitude=", round(inputMap_clicklat, 2)))

})

3.3 Guidelines for code

Unfortunately, unlike other programming languages, R has no widely accepted coding best practices. Instead there
have been various attempts to put together a few sets of rules. This chapter tries to fill the gap by summarizing
what was found relevant in those various attempts.

3.3.1 Hardcoding

Calling to a file or folder from within a script is mostly done through ‘hardcoding’, e.g. giving the location of
the file as a string. However, users are strongly recommended to keep the amount of hardcoding minimal, as it
requires less effort to change a script when a directory location changes if less hardcoding is used. To do so, if
your code will read in data from a file, define a variable early in the code that stores the path to that file. By
doing so, the following example:

input_file <- "data/data.csv"
outpu_file <- "data/result.csv"

#read input
input_data <- read.csv(input_file)

#get number of samples in data
sample_number <- nrow(input_data)

#generate results
results <- some_other_function(input_file, sample_number)

#write results
write.table(results, output_file)

is preferable to:

#read input
input_data <- read.csv("data/data.csv")

#get number of samples in data
sample_number <- nrow(input_data)

#generate results
results <- some_other_function("data/data.csv", sample_number)

#write results
write.table(results, "data/result.csv")

17

3.3.2 Naming conventions

R has no naming conventions for variables and functions that are generally agreed upon. As a newcomer to R
it is useful to decide which naming convention to adopt. Generally, there are five naming conventions to choose
from. It is important to pick one convention and stick to it for the remainder of your project:

• alllowercase: e.g. adjustcolor
• period.separated: e.g. plot.new
• underscore_separated: e.g. numeric_version
• lowerCamelCase: e.g. addTaskCallback
• UpperCamelCase: e.g. SignatureMethod

Above else, and besides the chosen naming convention, it is important to choose variable and function names
that are concise and meaningful.

3.3.3 Spacing

As with naming conventions, there are no syntax conventions when it comes to writing code in R. However,
large scripts benefit greatly from the use of a clear and consistent syntax, as it makes the code more open and
readable. Using correct spacing in your code makes an invaluable difference in the syntax. It can be implemented
by following these rules:

• Always put a space after a comma, never before, just like in regular English.

Good
x[, 1]

Bad
x[,1]
x[,1]
x[, 1]

• Do not put spaces inside or outside parentheses for regular function calls.

Good
mean(x, na.rm = TRUE)

Bad
mean (x, na.rm = TRUE)
mean(x, na.rm = TRUE)

• Place a space before and after () when used with ‘if’, ‘for’ and ‘while’.

Good
if (debug) {

show(x)
}

Bad
if(debug){

show(x)
}

18

• Place a space after () used for function arguments:

Good
function(x) {}

Bad
function (x) {}
function(x){}

• Most infix operators (=, +, -, <-, etc.) should always be surrounded by spaces:

Good
height <- (feet * 12) + inches
mean(x, na.rm = 10)

Bad
height<-feet*12+inches
mean(x, na.rm=10)

However, it is important to not overdo spacing as well. Adding extra space can help, but only if it improves the
alignment of = or <-. Do not add extra spaces to places where space is not helpful.

3.3.4 Code blocks

Just as when talking about the overall structure of a script, hierarchy is equally important within the code itself.
To define the most important hierarchies, curly braces are used. However, to keep the hierarchy transparent for
yourself and other users, a consistent syntax is needed when using curly braces. This syntax is based on three
rules:

• ‘{‘ should be the last character on the line. Related code (e.g. an if clause, a function declaration, a trailing
comma, . . .) must be on the same line as the opening brace.

• The contents should be indented by two spaces.
• ‘}’ should be the first character on the line.

Good
if (y < 0 && debug) {

message("y is negative")
}

if (y == 0) {
if (x > 0) {

log(x)
} else {

message("x is negative or zero")
}

} else {
y^x

}

19

3.3.5 Long lines of code

Users are recommended to always strive to limit the code to 80 characters per line. To do so, using a concise and
efficient naming convention might already be an important step. If a function call is too long to fit on a single
line, use one line each for the function name, each argument, and the closing bracket. This makes the code easier
to read and to change later:

Good
do_something_very_complicated(

something = "that",
requires = many,
arguments = "some of which may be long"

)

Bad
do_something_very_complicated("that", requires, many, arguments, "some of which may be long
)

3.3.6 Pipes

Even when using correct spacing and adequate structuring of code blocks, a script can remain quite difficult to
understand. This is especially true for scripts where a lot of different operations and functions are being used.
When code is formed by a lot of functional language, it comes with a large number of parentheses and arguments
per function. This can make code extremely complex and hard to understand.
To overcome this problem, users are recommended to using ‘piping’ for multiple actions on the same argument.
Piping uses the ‘%>%’ operator and can be used by installing the ‘magrittr’ or ‘dplyr’ library. It is best explained
through three simple rules:

• f(x) can be rewritten as x %>% f
• f(x, y) can be rewritten as x %>% f(y)
• h(g(f(x))) can be rewritten as x %>% f %>% g %>% h

#Import ’dyplr’ library
library(dyplr)

#Load the data
data(babynames)

#Count how many young boys with the name "Taylor" are born
sum(select(filter(babynames, sex=="M", name=="Taylor"), n))

#Do the same but now with ’%>%’
babaynames%>%filter(sex=="M", name=="Taylor")%>%

select(n)%>%
sum

3.3.7 Tidyverse style duide & add-ons

The R-community has multiple guides on how to style and manage your code in order to make it readable and
clean. All these style guides are however fundamentally opinionated. Some decisions genuinely do make code
easier to use, but many decisions are arbitrary. The most important thing about a style guide is that it provides
consistency, making code easier to write because you need to make fewer decisions.

20

Users of the RStudio environment of ScheldeMonitor are recommended to use the tidyverse style guide, as it is
one of the most commonly used guides. The rules mentioned above in this manual are also part of the tidyverse
style guide.
There are two tools that can be installed by users that make it easier to implement this style guide, the ‘styler’
and ‘lintr’ packages. The installation of the ‘tidyverse’ package is not needed for these applications. The ‘styler’
and ‘lintr’ packages can be installed with the following R code:

#Install packages ’styler’ and ’lintr’
install.packages("styler")
install.packages("lintr")

• The ‘styler’ package allows to interactively restyle selected text, files or entire projects. It includes an
RStudio add-in, the easiest way to restyle the existing code.

• The ‘lintr’ package can perform automated checks to confirm that code is conform the style guide. This
check is automatically displayed in the RStudio ‘Markers pane’. To show this pane, go the “Tools” Menu
and select “Global Options. . . ”. A window with title “Options” will pop up. In that window: Select “Code”
on the left; Select “Diagnostics” tab; Check “Show diagnostics for R”.

The following window will now be visible:

21

https://style.tidyverse.org

It is recommended to use the ‘styler’ package first, followed by the ‘lintr’ package. Because the ‘styler’ package
automatically corrects style errors such as the incorrect use of spaces and commas. Hence, the list of errors
generated by the ‘lintr’ package, that need to be manually corrected, is shorter.

4 Using data from ScheldeMonitor in RStudio

Most of the data in ScheldeMonitor can be used freely, and users are encouraged to use the RStudio environment
of ScheldeMonitor to further analyse and validate our data collection. To do so, the data needs to be loaded into
the RStudio environment first. This can be done either by loading downloaded data files such as CSV or TXT, or
by using the generic webservices of ScheldeMonitor. Both methods involve accessing the Data Download Toolbox
of ScheldeMonitor, which can be done using the following steps:

1. Go to the home screen of the toolbox and choose between biotic and abiotic data.

22

https://www.scheldemonitor.org/dataproducts/nl/download/

2. The toolbox offers several criteria to filter the database of ScheldeMonitor. These criteria differ for biotic
and abiotic data. In the explore tab you can select data based on the datasource, geographical area, or time
period. Details about the content of the dataset are accessible with the “more info” button (information
sign) on the right of the dataset name.

23

It is not mandatory to select a datasource, geographical area or time period in the explore tab. In the next tab
(accessible via the green “next” button) a specific taxon (biotic data) or parameter (abiotic data) can be selected.
Datasets, parameters, or taxa can be added to your selection with the plus sign on the right of the dataset,
parameter, or taxon.
When criteria are selected, the counter on the right side of the screen shows the remaining number of records
that match the chosen criteria.

3. Once all desired criteria are selected, select the green “Next” button to view a data summary of your data
in the toolbox.

24

4. The toolbox shows a summary of the chosen data set, along with several options to download or visualize
the data. The following actions can be taken in the toolbox:

• Download Data: a data file in csv-format will be downloaded. More detailed information is available
in the segment ‘A: Using data from download data files’.

• View on Map: visualizes the data in a dynamic map viewer.
• Upload to MDA: saves your specific data selection to the Marine Data Archive, so that this selection

becomes reusable on a later date.
• Save selection: saves a JSON file describing your specific data selection.
• Share: creates a URL link of your selection
• Webservice URL: generates a WFS url (Web Feature Service) that can be used to automatically load

the data in a script or medium. More detailed information is available in the segment ‘B: Using data
from generic webservices’.

• Load selection: loads in a previously saved data selection using a JSON file.

25

5. Most, but not all data in ScheldeMonitor is public. Some data are only visible for users with appropriate
credentials. For these data sets, no values will be given when downloading the data using both data files
and webservices. Therefore, the toolbox provides a “Login” button in the upper right corner. This button
will take users to a login screen where credentials can be entered or requested. After successful login, return
to the toolbox. All values will now be visible upon downloading the data set.

4.1 Using data from download data files

Users can now choose to download the data from the ScheldeMonitor toolbox as data files in a CSV file format.
To do so, and to use them in the RStudio environment, the user can perform the following steps:

26

1. The user selects the “Download Data” button and submits all necessary information to commence his/her
download:

• Organization: Select the type of organization you work for. This is not mandatory.
• Email: Provide the toolbox with an email address to which a notification can be send on the readiness

of your download.
• Country: Select the country from which the download is done.
• Data purpose: Select for which purpose the download is done.

2. After the necessary information has been submitted, your data will be prepared for download. This prepa-
ration can be followed in the upper right corner of the screen. After the preparation is done, a button will
be provided by which the download can begin. For large data files, a mail can be sent to a given address to
notify a user that the download is fully prepared.

27

3. Once the data file is saved on the local drive, the user can load it into the RStudio environment to start
working with the data. This can be done by using the basic package of R, by running the following function:

data = read.csv("paht/file.csv", stringsAsFactors = FALSE)

For example:

data_waterstand = read.csv("Data/hoogwater_combinded.csv", stringsAsFactors = FALSE)

4. CSV is the only format in which the data files can be downloaded. This format does however have a limit of
1.000.000 records. Larger files will lose records when a user wants to open them in MS Excel before loading
them in R. Therefore, users are recommended to open these larger data files as a TXT file, in programs like
Notepad++.

4.2 Using data from generic webservices

However, users of the RStudio environment of ScheldeMonitor are urged to make use of the generic webservices
that are available in the data download toolbox of ScheldeMonitor. These webservices are a URL format that
automatically queries the ScheldeMonitor database without human intervention. The composition of this URL is
automatically generated, based on the selection made by the user in the criteria of the data download toolbox.
Using webservices has the added advantage that no data files are needed to load in the data set in R, and that the
most recent version of the database is queried. The latter implies that when new data is added in the database to
an already downloaded data set, the same webservice URL will be able to automatically load in the newly added
data. To use the webservices in the RStudio environment:

28

1. Select the “Webservice URL” option in the data download toolbox, which will give you the URL that is to
be used to acquire the selected data set.

2. Once you copied the entire URL, you can use it to load your data into the RStudio environment. Therefore
you can use a function in the R-library ‘sf’ and the following lines of code:

install.packages("sf")
library(sf)
webservice <- "URL"
data <- data.frame(st_read(webservice))

3. Depending on the size of the requested data set, loading the data in R can take up to a minute. Nevertheless,
the data set will be available in the environment of the RStudio. The limit of the webservice is capped at
around 1.000.000 records per request. Therefore, it is recommended that users generate multiple separate
URL’s in the toolbox if they want to analyze more than a million records, and merge the data set in R itself.

4. VLIZ has made a script read data for a given time period (one year) for a given parameter. This script
can be found below or on the ScheldeMonitor GitHub page. How to access the ScheldeMonitor GitHub
organization is described in a dedicated manual on the use of GitHub, available on the website.

#Created by Jelle Rondelez (VLIZ) on 8/3/21

#These packages are needed
install.packages(sf)
install.packages(stringr)
install.packages(dplyr)
library(dplyr)
library(sf)
library(stringr)

dataset <- data.frame()

#Here, the years for which you want to download data should be listed.
#Using the for loop, data can be downloaded per year by default
years <- c("2016","2017","2018","2019","2020","2021")

#This is a test string. Replace it with your own string
#The timespan of the original wfs string should run from 1 Jan tot 31 Dec

29

https://github.com/scheldemonitor
https://www.scheldemonitor.org/sites/scheldemonitor.be/files/2021-07/manual-github.pdf
https://www.scheldemonitor.org/en/data-analysis-platform

#no matter which years are selected
wfsstring <- "http://geo.vliz.be/geoserver/wfs/ows?service=WFS&version=1.1.0&request=GetFeature&typeName=Dataportal%3Aabiotic_observations&resultType=results&viewParams=where%3Aobs.context+%26%26+ARRAY%5B1%5D+AND+standardparameterid+IN+%281073%29+AND+%28%28datetime_search+BETWEEN+%272016-01-01%27+AND+%272021-12-31%27+%29%29%3Bcontext%3A0001&propertyName=stationname%2Clongitude%2Clatitude%2Cdatetime%2Cdepth%2Cparametername%2Cvaluesign%2Cvalue%2Cdataprovider%2Cdatasettitle&outputFormat=csv"

#This for loop results in the download of yearly datasets.
#At the end of the loop, all datasets are both saved seperately and appended together.
#If the user wants to download in larger timespans, change the second ’years[i]’
#example: ’years[i+1] downloads data for two year spans

for (i in 1:length(years)) {
wfsstring <- str_replace(wfsstring,"(?<=%27).*(?=-12-31)",

paste(years[i],"-01-01%27+AND+%27",years[i],sep=""))
name <- paste(years[i])
data <- data.frame(st_read(wfsstring))
dataset <- rbind(data,dataset)
assign(name,data)

}

5 Helpdesk

VLIZ is responsible to keep the RStudio environment of ScheldeMonitor up and running. Besides foreseeing the
necessary server and memory capacity, VLIZ will thus also make sure that all necessary R libraries and packages
are installed on the RStudio server. If new libraries and packages need to be installed, users can contact VLIZ to
do so.
To accommodate these and other needs of users and contributors, VLIZ will have a permanent helpdesk. This
helpdesk can be contacted through the general address of the ScheldeMonitor:
Helpdesk ScheldeMonitor

Data Centre - Local Services & Projects

Vlaams Instituut voor de Zee vzw
Flanders Marine Institute
InnovOcean site, Wandelaarkaai 7
8400 Oostende, Belgium

T +32(0)59340172
info@scheldemonitor.org
www.vliz.be

For urgent matters or questions, or if users and contributors want to discuss the use of the RStudio environment
for certain projects, the project manager of ScheldeMonitor should be contacted:
Jelle Rondelez

Project Manager
Data Centre - Local Services & Projects

Vlaams Instituut voor de Zee vzw
Flanders Marine Institute
InnovOcean site, Wandelaarkaai 7
8400 Oostende, Belgium

M +32(0)473510828
jelle.rondelez@vliz.be
www.vliz.be

30

mailto:info@scheldemonitor.org
www.vliz.be
mailto:jelle.rondelez@vliz.be
www.vliz.be

	About
	Connecting to the RStudio environment of ScheldeMonitor
	Working with the RStudio environment of ScheldeMonitor
	Guidelines for workspace
	Guidelines for scripts
	Guidelines for code

	Using data from ScheldeMonitor in RStudio
	Using data from download data files
	Using data from generic webservices

	Helpdesk

